BRL-TR-3064

D :
TECHNICAL REPORT BRL-TR-3064

LO
g POSSIBILISTIC VULNERABILITY MEASURES
LO
F
N
h
) AIVARS CELMINS
< DTIC

R FIECTE ey
DECEMBER 1989 %, DECO71S83F H

%%'QDE

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

U.S. ARMY LABORATORY COMMAND

BALLISTIC RESEARCH LABORATORY
ABERDEEN PROVING GROUND, MARYLAND




DESTRUCTION NOTICE

Destroy this report when it is no longer needed. DO NOT retum it to the originator.

Additional copies of this recport may be obtained from the National Technical Information Service,
U.S. Depantment of Commerce, Springfield, VA 22161.

The findings of this report are not 1o be construed as an official Department ¢f the Ammy position,
unless so designated by other authorized documents.

The use of trade names or manufacturers’ names in this report does not constitute indorsement of
any commerical product.




UNCLASSIFIED
SECURITY CLASSIFICATION OF TH'S PAGE
FOI'MW
REPORT DOCUMENTATION PAGE OMB No. 07040188
Ta. REPORT SECURITY CLASSIFICATION b RESTRICTIVE MARKINGS
1fied
23. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION / AVAILABILITY OF REPORT
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE Approved for Public Release;
Distribution Unlimited.
4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
BRL-TR- 3064
6a. NAME OF PERFORMING ORGANIZATION 60. OFFICE SYMBOL [ 7a. NAME OF MONITORING ORGANIZATION
(if applicable)
USA Ballistic Research Laboratoyy SLCBR-VL-G
6c. ADDRESS (City, State, and Z2IP Ccde) 7b. ADDRESS (City, State, and 2IP Code)
Aberdeen Proving Ground, MD 21005-5066
8a. NAME OF FUNDING / SPONSORING 8b OFFICE SYMBOL | 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)
8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNiT
ELEMENT NO. | NO. NO. ACCESSION NO.
11. TITLE (Include Security Clessification)
POSSIBILISTIC VULNERABILITY MEASURES
12. PERSONAL AUTHOR(S)
LAivars Celmip¥
13a. TYPE OF REPORT 13b TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 115. PAGE COUNT
FINAL FROM TO
16. SUPPLEMENTARY NOTATION
17. COSATI CODES 18. SUBJECT TERM‘? (%ontinue 9511 ;etverxe if necesurysn% identify by block number,
- easures of Vulperabili aque
FIELD GROUP sua-Grour | REasures Ecss1g]f1gy Y Bogslb1?1%{_Thsor¥ e
Degree of Necessity ~ ~  Possibilistic Patlern Matching
Possibilistic Kill Criterion. ,

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

"Possibility theory has been developed to handle data that are vague but not necessarily
probabilistic. Because this type of information is characteristic for vulnerability
problems, possibility theory is particularly well suited for applications in vulnerability
analysis. This report provides a short introduction to the theory and describes how
possibilistic concepts can be used to analyze vulneratilities. The essential result is the
establishment of measures for the possibility and necessity of kill of a system in presence
of a threat. The system, the threat and the responses of elementary system components are
approximately defined in terms of fuzzy sets. This information is used to specify a
possibilistic pattern matching problem the solution of which are degrees of possibility and
necessity that the system is killed. The advantage of these measures of vulnerability is
that they indicate not only whether a system is intact or damaged, but also how close the
system is to the threshold of damage.

}
20, DISTRIBUTION / AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
O unclassipieounumep (8 same as ReT [ oric users | Unclassified
728, NAME OF RESPONSIBLE INDIVIDUAL 726 TELEPHONE (include Ares Code) | 22c. OFFICE SYMBOL
Bivars gg]mjng 39]'ZZ§'§2ﬁﬁ =Yl -

DO Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED




INTENTIONALLY LEFT BLANK.




TABLE OF CONTENTS

Page

1. Introduction «.evvecennonsees N ceerssesan resenritiesean N |
2. Possibilistic Vulnerability Criterions civeeeessconecessascassssessescoes 2
2.7, Crisp Kill CIiterions ..ivvuieeiereircestnernesssssosasessnsanss 2

2.2. Possibilistic Decision Bouuds seaviriaiioniiisrerissnsstecsenees 4

2.3. Possibilistic Events voevvvieinnenn Cericiaersssitiaerernataransy h)

2.4. Example .....0n0inn Cetanaas cetesaaans Threrettiatesttiateenaes 6

3. Aggregation of Possibilistic Measures ........ Cereaaan Cereearansenns .. 8
4. Conclusions L v i innvasenssssnssansonasasnsanssns Ceresaiaaees 11
LIST OF REFERENCES ........... Ceraaneas Srenseanrcisseensronnsne 13
DISTRIBUTION LIST sttt ittt ittt it in it iensaseenesnsnansasanaannnes 21

Accession For

NTIS GRA&I

DTIC TAB

Unannounced 7

Justification

By ] S
Distritution/ -

Avallebnllity (Cocdos

Avail and/or
Dist Special

Al




INTENTIONALLY LEFT BLANK.

’




Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Figure 6.
Figure 7.

LIST OF ILLUSTRATIONS.

Page
Decision Bound in a 2-D Event Space «viiveeinisnerstnsnanass 14
Trapezoidal Membership Function of a Decision Bound ........ 15
Possibility and Necessity of Crispa =< FUZzy y «vvovevvenaass 16
Possibilityof a2-D Event ... iiviivininaniniesareneneaas 17
Possibility Measures for "Kill" in Case of a Fuzzy Event
and a Crisp Decision Function .vuvievevesosssscesnoacssasaans 18
Example of a Fuzzy Decision Bound .. ..covvivnnnss veeea 19

Fuzzy Event with Interactive Components .....c.vveeenses 20




INTENTIONALLY LEFT BLANK.

vi




1. Introduction

A theory of possibility was first proposed by Zadeh in 1978 (Reference 1) as
a means to quantify judgement. The theory provides a formalism to treat vague,
imprecise or incomplete information which is different from the approaches by
probability theory and interval analysis. Each of these three theories emphasize
different aspects of vagueness and thus complement each other. Possibility theory
is particularly adequate for the development of vulnerability measures because,
first, the basic infcrmation in vulnerability problems is typically vague but not
random and, second, the theory provides a natural means to rank the relative
outcomes from a combination of targets and threats. A comprehensive summary of
the present status of possibility theory is given in Reference 2.

The relation between possibility theory and interval analysis is easy to
describe because interval analysis is a limit case of possibility theory. More
precicely, for interval analysis one assumes that an event either does or does not
belong to a certain category. whereas in possibility theory the event is allowed to
beiong more or less to the category. This is expressed by assigning to the event
and to its contrary a lesser or larger degree of possibility (between 0 and 1}). These
two possibilities are only weakly related: if an event is possible, then this does not
prevent its contrary to be possible, too. (The law of the excluded middle is
weakened in the context of possibility measures). The complement (with respect
to 1) of the degree of possibility of the contrary event can be interpreted as the
necessity (certainty) of the event itself. Thus, in possibility theory an event is
shusantenis= by twe pocsitility measvres — a degree of possibility I1 and a degree
of necessity N.

The relation between possibility theory and probability theory is more
esoteric. They are connected via the concepts of plausibility and belief within the
framework of Dempster-Shafer theory. In order to handle incomplete data
Dempster introduced the concepts of iower and uppcr probghilities. The actual
probability of an event (with complete and disjoint elements) falls between these
limits. If the data are crisp and certain other requirements are satisfied, then the
lower probability (belief) corresponds to a degree of necessity and the upper
probability (plausibility) corresponds to a degree of possibility. Hence, if it makes
sense to assign a probability to an event, then it likely has a value somewhere
between the degrees of necessity and possibility. The generalization which is
achieved by using possibilistic instead of probabilistic measures provides a natural
way to handle data which are not exact, but given, e.g. by an interval. Probability




measures generally apply to precise but differentiated items, whereas possibility
measures are more adequate for the representation of imprecise and possibly
coherent information. The most striking difference between probability and
possibility is that the probability P(A) of an event completely determines the
probability P(A) of its contrary: P(A)=1-P(A). The corresponding possibility
measures satisfy only the relations I1(A)+II(A)=1 and N(4)+~ N(A)s1.

In applications to vulnerability analysis one is particularly interested in
possibilistic pattern matching. Indeed, in order to determine whether a system
component e<E is killed in the presence of a threat 1¢T, one might define in the
event space G=(EXT) a set K of all such events for which the system component s
assumed to be killed, and then check whether the given element g=(e,r) belongs to
K. If the descriptions of g and X are vague then g might match an element of K to
a larger or lesser degree. Possibility theory allows one to associate with such a
partial matching a degree of possibility 1 x(g) and a degree of necessity Nx{(g) that
e is killed. Once Ll ¢ and Ny are known for all components of a system, then the
corresponding Il and Ng for the whole system are computed by aggregation of the
individual results using logical "and/or” rules in a fault tree.

This report is a short description of the concepts and techniques that are
needed for the application of possibility theory to vulnerability problems. In
Section 2 we discuss the computation of kill possibility measures for an elementary
system component. Section 3 outlines the aggregution of elementary possibiltties to
obtain the possibility measures for a kill of a system.

2. Possibilistic Vulnerability Criterions.

2.1. Crisp Kill Criterions.

To determine the vulnerability of a system, generzlly the system is broken
down into components, which are in turn broken down intc subcomponents, etc.
until at the lowest level one has a set of elementary components. The state of each
elementary component is assumed to be either "intact” or "killed”, and is indicated
by a 1 or 0, respectively, in a state vector where each vector componcat represents
the state of an elementary system component. The state of the system is calculated
from the binary state vector of the elementary components by logical aggregation
which successively yields state indicators for higher level system comnonents, At
those levels, the state indicators generally can have values in the interval [0,1)
indicating the level of operability of each system component. (Alternatively the
computations might yield probabilities of damage. We shall not discuss the pro and
contra of various methods of aggregation and/or interpretation of the results. Our
interest is in the general approach which consists of an est:mation of the state of
low level components and aggregation to obtain the state of higher level
components). The final result of the aggregation algebra are indicators of the state




of the whols ,stem. If the systern encounters a specific threat then the state vector
of the e’. _entary components changes and the aggregation yields state indicators
of th .,ew state of the system due to the threat. Hence one basic problem in
vilnerability estimates is the definition of a threshold for the threat above which
the state of an elementary component is affected.

Let the kill criterion of an elementary component be expressed by the
equation

Clet) =0 | (2.1)

where e iIs a parameter describing the component and ¢ 15 a parameter which
specifies the threat. C(e,r) is a decision function (in a probabilistic model it may
also depend on random variables). Let it determine the outcome of a pairing of e
and r by the convention

C(er) < 0 —* ccmponentintact (2.2)
C(eg) =2 0 — component killed

or

59y if Cley) <,

0 if Cle.)=0 | (2.3)

ey = |
S (e.r) =
(e.0) =1
where § :‘(e) and S'l'(e.r) are the states of the elementary component before and
after application of the threat, respectively.

We illustrate in Figure 1 the notion of a decision function in a case where ¢
and ¢ are scalar parameters, and the zero level of the decisi»n function defines a
curve in the e.r-plane. A specific combination of corcponent ind threatis given by
particular values for e and ¢+ which define a point in the event slane. Depending on
the location of that point with respect to the decision curve ¢ =0 the component is
assumed to be either intact or killed.

Several generalizations of this situation are needed in p:actice aside from the
obvious that e and r usually are vectors. First, the descriptors ¢ and ¢ might be
known only approximately and, second, the decision function C might be only
defined within some bounds. We assume that these inaccuracies are defined in
terms of fuzzy numbers and functions, that is, by membership functions which
express the possibility of the occurrence of a specific threat r and target element e,
and which define possible locations of the decision bound C(e,t)=0 in the event
space.

As an example, assume that the caliber of a threat projectile is known to be
within certain bounds. Then we assign positivc membership values (less or
equal 1) to calibers within these bounds and zero membership values to all other
calibers. Thess membership values then define the fuzzy set "caliber of the




threat”. Approximate target descriptions are handled correspondingiy.
Approximate decision functions define, insteud of a crisp decision surface as a
solution of the equation C(e,r)=0, a fuzzy surface as the solution of a fuzzy
equation which represents a gradual transition between "kill" and “intact”
situations. We assume that the gradual transition again is expressed by a
corresponding membership function. An example of such a representation is given
in the next section.

2.2. Possibilistic Decision Bounds.

One can treat the kill criterion (2.2) as a pattern matching problem because
the condition C(e,t)=0 defines in the event space G=(EXT) a subset X of
unfavorable combinations of ¢ and ¢. Given a particular event g={e,f) one is
interesied to determine whether this datum matches any of the elements in X, that
1>, whether g¢K. This is a pattern matching problem. If g and/or K are cnly
approximately given, then a matching to a larger or lesser degree is a natural
outcome. Measures of the degree of matching are provided by the concepts of
possibility theory (Reference 3). In this section we consider the special case where
the decision function is fuzzy and the events g are crisp. In the next section we
shall consider the general case where the decision function as well as the svents are
fuzzy.

We indicate fuzzy functions by a tilde and let the decision be specified by a
fuzzy function C (e.t). The decision equation E(e,:)= 0 defines in the event space a
fuzzv surface (Reference 4) which is the fuzzy bound of the set K containing the
“kill" patterns. (The set is fuzzy because its boundary is fuzzy). Figure 2 shows a
fuzzy bound in a one-dimensional event space, where C =0 defines a fuzzy
nuiuber, or a "fuzzy point” as a fuzzy segment of the nummber line. For
convenience we shall assume in our examples that fuzzy numbers have trapezoidal
membership functions as shown in the figure. The interval [x;,x1] is called the core
of the number, and the interval [x;—xj3, x;+x4] is called the support of the
number. Fuzzy numbers x with this type of membership functions can be
conveniently represented by the quadruple (x,x5,x3.x4). If the number is crisp, say
x;. then its representation is (x3,x3,0,0). In the present example the fuzzy number
in Figure 2 is meant to be the solution of a fuzzy equation C(x)=0. We assume
that there exists a corresponding crisp equation C(x)=0 which has a solution x
within the core of the fuzzy solution.

Let g (x) be the membership function of a fuzzy number y. The degree of
possibility that a crisp number a is smaller than y (is to the left of y) is a fuzzy
number with the membership function (Reference 2)




Pasy(a) = sup u,(§) . (2.4)
£sa

The degree of necessity that a is smaller than y is defined by the membership
funciuion

Vasy(@) = inf (1=, (®) . (2.5)

Figure 3 shows these possibility and necessity membership functions for a fuzzy
bound ¥ with the membership function shown in Figure 2. If the vound y is a crisp
number then there is only one crisp segment of the number line where the crisp
numbers are less than y. In contrast, if the bound is fuzzy then therc are two fuzzy
segments, defined by the membership functions p and v, and representing the
possibility and necessity, respectively, that a crisp number is less than y.

The generalization to a multi-dimensional situation is simple. Let the bound
of K be given by a membership function wxag(e.?), and let the corresponding crisp
equation C(e,r)=0 cefine a crisp decision bound within the core of wx.;. Then
the possibility that the pairing g=(e,r) resulis in a kill of the component e is

weailet) if C(e)<0

pyle,t) = pgci(fﬂ) = L 1 if Cleyt) 20 . (2.6)
The necessity that the pairing g results in a kill of ¢ is
0 if C(eg)<O0,
vilet) = vpeg(e) = 1 g _ peo(en) it Clen=zo0. @7

The membership functions p ¢ and v g define in the event space the fuzzy
subsets of possibility and necessity, respectively, that a crisp event corresponds to a
kill. We call these subsets Ky and Kn. If the decision criterion is crisp then the
subsets are identical ordinary crisp subsets.

2.3. Possibilistic Events,

We now consider the case where the component as well as the threat are
given by sets of possible values of e and ¢. Let the functions mwg(e) and 7y (¢) be
the degrees of possibility that ¢ and ¢ actually occur. Given those possibiiities, one
would like to know the possibility and necessity that the event g= (e,r) corresponds
to a kill situation.

In the event space G the possibility of the event g=(¢,r) has the membership
function

wg(e,t) = min { wg(e), wr (1) } . (2.8)




If ¢ and ¢ are scalars, and 7w g(e) and 7 (¢) are trapezoidal functions then mws(e,t)
is a frustrated pyramid in the e,r,w-space as shown in Figure 4. wg(e,r) defines a
fuzzy subset g in the event space. In Figure 4 this subset is a fuzzy point in a two-
dimensional space. The possibility that this point corresponds to a kill situation is
measured by the degree of possibility that g matches a point within the subset Ky
def'ned Oy C(e,t)>0. That possibility is calculated as follows (Ret. 2, p.25;
Ref. 3, p.316):

HK(E) = Hgg!? = seu? min { '“G(t,l), pK(C,l) } ’ (2'9)

where pyg is the membership function of the subset EII- The necessity of a match is
calculated by using the membership function vg of the subset Ky and the formula

Ng(8) = Nycg = 1 = sup min{ag(e,s), 1-ve(e,r) } . (2.10)

Figure 5 shows a number ol possible situaiioas in the case where the event
space is two-dimensional and the decision function C(e,t) is crisp. The event is
given by a membership pyramid similar to that in Figure 4. A number of different
locations of the decision curve are shown as dashed lines. The degrees of
possibility and necessity that the event belongs to the subset C=0 depends on the
relative locations of event and decision curve, and the decision curves are labeled
correspondingly. The figure shows how to interpret the possibility and necessity
measures. The possibility is positive if a part of the support of g is inside K, and it
equals 1 if at least a part of the core is inside K. The necessity is zero unless the
whole core is inside K. It equals 1 only if the whole support of g is inside X.

Trapezoidal membership functions are well suited for the discussion and
illustration of possibilistic concepts. However, a restriction to trapezoidal fuzzy
numbers has also practical numerical advantages because with this restriction and a
decision functicn which yields the values of px(e,r) and vg(e,t) for any set (e,r)
one can compute Il and Ng by fast search algorithms.

2.4. Examgle.

We present an example of combined kill criterions for an armor plate
subjected to blast. For this example, we consider two types of damage: a failure
of the plate and a deflection greater than a threshold. The plate (or a component
behind the olate) is "killed"” if either of these criterions is satisfied.

Both criterions are formulated in terms of the following dimensionless
variables.




Z
A==,
A
E (2.11)
B = — ’
s°ho,
where z = deflection of the plate after loading,
s = distance of the charge from the plate,
E = energy of the charge,
h = thickness of the plate,
o, = yield stress of the plate’s material.
Let the failure bound be given by the equation (Reference §)
Ci,=B-By=0, (2.12)
let the deflection be given by the function
Z=a+bB'°, (2.13)

and let the damage criterion due to a large deflection be given by the equation
C-=a+bB>-A=0, (2.14)
where A=z, /s is a critical value for the deflection.
In the event space, the component (the plate) is represented by the vector
e=(ho,  .z.y) (2.15)
and the threat is definc:! by the vector
t=(E,s) . (2.16)

Hence, the event space is four-dimensional in this example. The subset of killed
components in the event space is defined by

(e,f) € K if Cie,)= 0, or Ciled)=0. (2.17)

The analysis can be simplified by mapping the four-dimensional event space
to a two-dimensional space with the dimensionless coordinates A and B. The
mapping is provided by eq. (2.11). The parameters a, » and the exponent 1.5 in
eq. (2.14), and the parameter B in eq. (2.12) are fuzzy numbers. Therefore the
decision bound cefined by eq. (2.17) is a fuzzy curve in the B,A-plane. Itis shown
in Figure 6. The support of the decision bound is the area between the two
outermost curves. The core of the bound is the curve running approximately in the
center between the support boundaries. It corresponds to the line p cup=1 (the
crisp solution of the decision equations). The straight vertical lines in the top part




of the figure represent the failure bound (2.12) and the curved part of the bound
represents eq. (2.14). Events corresponding to a kill of the component are in the
lower right part of the figure. In that area the membership values of the possibility
of kill, px, and necessity of kill, vg, both equal 1. Moving to the left, the necessity
membership v g reduces to zero at the center curve, at which point p g starts to
decline and reaches zero at the leftmost curve. The two surfaces pg(8,A) and
vi(B,A) define for a crisp event (B,A) the degrees of possibility and necessity of
kill.

In real applications, the input values of A and B are fuzzy. For instance,
when one computes the vulnerability of a given vehicle, then one might have the
exact values of the parameters ho, and z.;, but only a possibility membership
function for the parameters E and s of the threat. Then both coordinates A and B
of the event are fuzzy because both depend on the fuzzy threat parameters.
Moreover, because A as well as B depend on the same parameter s of the threat
they are "interactive” in the terminology of fuzzy sets. Figure 7 shows three
examples of such fuzzy events. We have assumed in all three cases the same fuzzy
value E of the energy of the charge and varied its distance ¥ from case to case by
the (crisp) factor 1.32. Because the two coordinates B and A of the events are
interactive, the supports and cores of the events resemble slanted parallelograms
instead of being rectangles as in Figure 4. The boundaries of the decision bound
from Figure 6 are plotted in Figure 7 as dashed curves. One observes that the
degrees of possibility and necessity of kill increase as the distance between the
charge and target decreases, that is, as the event moves to the right and into the
subset corresponding to C>0.

3. Aggregation of Possibilistic Measures.

Section 2 describes the computation of the degrees of possibility and necessity
that an elementary system component is killed. The corresponding indicators for
higher level components and for the whole system are computed by aggregation
operations on the vectors of state, possibility and necessity of the elementary
system components. Now we shall discuss such aggregations.

Thke initial state of an elementary system component e<E is given by its state
value S(O’(e) which is either 0 or 1. The threat defines an event space G=(EXT),
and the decision criterions for the components e define in the event space subsets X
where a kill of the elementary system components is possible. Actually, because
we compute the possibility as well as the necessity of a kill, and assume a fuzzy
decision criterion we have two such subsets which we call Ky and K \, respectively.
(If the criterion is crisp, then the two subsets are crisp and identical). The
possibility that a fuzzy event g corresponds to a kill of ¢ is in terms of the initial
state S of the component and the possibility I1x that §€l?n given by the formula




P@ =1 -s9@ (1 - 1x(@) . (3.1)
The necessity that the event corresponds to a kill of ¢ is
NE(@) = 1 - s9@ (1 - N@®) 3.2)

where Ng is the degree of necessity that EGI?N. Hence, after the application of a
threat (pairing the initial state of the system with a threat), the state of each
elementary system component is characterized by two numbers Hg) and N,g) in the
interval [0,1] instead of the one binary state indicator S, If everything is crisp
then eqgs. (3.1) and (3.2) reduce to eq. (2.3) and the new state of the system is
indicated by the binary state vector $(V). The possibilistic indicators provide
additional information, in essence telling one how close the event is to a threshold
of damage.

The degrees of possibility and necessity of killing a higher level cotuponent f
are calculated in two steps. First, the results at the elementary level are aggregated
to obtain transfer values [l and Ng for the higher level corponent. Then, these
quantities are used in equations (3.1) and (3.2) to calculate the possibility measures
for f. The transfer values are obtained as follows.

Let ¢g=(f,t) be the event in terms of the component and threat combination
for a higher level component with the parameter f. For simplicity we omit the tilde
which indicates fuzziness and assume from now on that all entities can be either
crisp or fuzzy. The aggregation of the transfer functions depends on the type of
dependency of f on the elementary components e. The simplest rules of
aggregation are those for a pure conjunction and pure disjunction. If the
aggregation of elementary system components to the next level is a conjunction
(component f is killed if all components e; through ¢, are killed) then the transfer
values of the possibility and the necessity are aggregated by min operations
(Ref. 3, p. 318):

min nge) (3.3)

.....

Nk() = min Npg) . (3.4)

If the aggregation is disjunctive (f is killed if either of the components ¢, through
e, is killed), then the max operator is used:

Hg(e) = max NEYz) (3.5)




Nx(g) = max Ngk(g) . (3.6)
i=1,..., r
In practical applications, one needs more flexibility than provided by these
standard aggregations. Such a flexibility is obtained by attaching weights to the
lower level results, whereby the weights express the relative importance of a kill of
elementary level components for the kill of a higher level component.

Lete;, i=1,...,n be the set of all elementary system components and g; be the
corresponding elements of the event space. Let w;€{0,1] be weights expressing the
relative importance of the decision function C;, that is of the state of the element
e;, for the aggregation with respect to the higher level component f. (A larger
weight means that the killing of the particular component is more important; in
terms of pattern matching, the matching of a component with a larger weight is
more significant). Let the weights be normalized by

omax w; =1 . (3.7)

The transfer values are obtained in case of weighted conjunction by the
minimization (Ref. 3, p.322)

Ng(e) = min max{1-w;, UM} , (3.8)

Ne(9) = min max{1-w;, NP)g)} . (3.9)

Hk(e) = max min{w , )} (3.10)
Ni(q) = _max min { w; , N$ () } . (3.11)

Egs. (3.7) through (3.11) contain the unweighted aggregations as a special case
with w;m 1,

The degrees of possibility and necessity that f is killed are computed from the
transfer values in analogy to eqs. (3.1) and (3.2) by

) =1 -590-(1 - Hg(q)) (3.12)

and

10




Ngi @) = 1= 5D (1 - Ne(@)) (3.13)
where S(O(f) is the initial state of the system component f.

The weighted aggregation is a convenient method to compute different kill
categories from the same damage state of the elementary components. Thus, the
contribution of a component e; or subsystem f; to a firepower kill often will differ
from its contribution to a mobility kill, or to a specific mission kill. The weighted
aggregation provides more flexibility than a categorical assignment of the

components to groups corresponding either to “contribution” or to "no
contribution” to a specific type of kill.

4. Conclusions.

In vulnerability analysis, the available information often is imprecise but not
random, for instance if the threat or the target is a future system or when one seeks
to estimate the vulnerability of a system to threats within a finite range. The
analysis of this type of data is the subject of possibility theory which defines
measures for the possibility and the necessity that an approximately described
system is killed in the presence of an approximately described threat. Of these two
possibilistic ineasures, the degree of necessity is more importar* for applications in
vulnerability, because a positive necessity measure means that one can be more or
less certain that a kill takes place.

The input for vulnerability estimates based on possibility theory consists of
approximately given threats and approximately described syvstems in addition to
approximate decision functions for the damage of elementary components of the
systern. The user has a great freedom in defining the uncertainties and the theory
takes into account all these inaccuracies in a semantically correct manner. Equally
flexible is the aggregation of possibilistic damage indicators of elementary system
componentis to obtain the degrees of possibility and necessity that the whole system
is killed. By using proper weights in the aggregation process one can obtain the
results for various kill categories with the same computer program.
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in a 2-D Event Space
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